Conservation of nodulation genes between *Rhizobium meliloti* and a slow-growing *Rhizobium* strain that nodulates a nonlegume host

(Parasponia Rhizobium/symbiosis/interpecies complementation)

DEBORAH J. MARVEL*,†, GRETCHEN KULDA‡, ANN HIRSCH‡, ERIC RICHARDS§, JOHN G. TORREY†, AND FREDERICK M. AUSUBEL*§

§Department of Genetics, Harvard Medical School, and *Department of Molecular Biology, Massachusetts General Hospital, Boston, MA 02114; †Department of Biology, Wellesley College, Wellesley, MA 02382; and ‡Department of Organismal and Evolutionary Biology, Harvard University, Cambridge, MA 02138

Contributed by John G. Torrey, May 6, 1985

ABSTRACT *Parasponia,* a woody member of the elm family, is the only nonlegume genus whose members are known to form an effective nitrogen-fixing symbiosis with a *Rhizobium* species. The bacterial strain RP501 is a slow-growing strain of *Rhizobium* isolated from *Parasponia* nodules. Strain RP501 also nodulates the legumes siratro (*Macroptilium atropurpureum*) and cowpea (*Vigna unguiculata*). A Tn5 cosmid clone bank of RP501 DNA, we isolated a 13.4-kilobase (kb) EcoRI fragment that complemented insertion and point mutations in three contiguous nodulation genes (*nodABC*) of *Rhizobium meliloti,* the endosymbiont of alfalfa (*Medicago sativa*). The complemented *R. meliloti* nod mutants induced effective nitrogen-fixing nodules on alfalfa seedlings but not on siratro, cowpeas, or *Parasponia.* The cloned RP501 nodulation locus hybridized to DNA fragments carrying the *R. meliloti* nodABC genes. A 3-kb cluster of Tn5 insertion mutations on the RP501 13.4-kb EcoRI fragment prevented complementation of *R. meliloti* nodABC mutations.

Biological nitrogen fixation is the process by which microorganisms carry out the enzymatic reduction of atmospheric nitrogen to ammonia. Species of the Gram-negative genus *Rhizobium* carry out nitrogen fixation in symbiotic association with a plant. Almost exclusively, the host plant is a legume.

Particular *Rhizobium* strains develop specific associations with members of the Leguminosae. Some strains are highly host specific, while others are promiscuous and can interact with several host plants in the legume family (1).

The experiments described here concern the anomalous association between one strain of *Rhizobium* and a nonlegume, *Parasponia rigida,* a member of the family Ulmaceae. The infection pathway in this association differs markedly from the typical legume infection process, which involves either the invasion of curled root hairs via infection threads and the intracellular release of bacteria or the invasion of the root via epidermal "cracks" and subsequent passive spread of bacteria via host cell division (2). In the *Parasponia* symbiosis, infecting bacteria penetrate the epidermis and outer cortical layers of the root via intercellular spaces generated by cell divisions in the epidermis and cortex. The epidermal cell divisions are induced by the bacteria and, occasionally, even root hair cells, which become swollen and distorted but not curled, divide, an event peculiar to this infection process (3). Infection threads are initiated within the cortex, and bacteria are retained within these threads, where they fix nitrogen. This latter stage contrasts dramatically with the events of legume nodule development where bacteria are liberated from infection threads and differentiate as nitrogen-fixing bacteroids within the plant cell, separated from the plant cell cytoplasm only by a plant-generated membrane.

As a first step in identifying the genetic basis for the unique capacity of the *Parasponia Rhizobium* to fix nitrogen in symbiotic association with a nonlegume, we have sought to clone the genes from this *Rhizobium* that are required for the nodulation of *Parasponia* or legume host plants. In particular, we are interested in answering the question of whether the same *Rhizobium* genes are involved in the nodulation of *Parasponia* and legume hosts.

Rhizobium genes required for nodulation (*nod* genes) have previously been identified and cloned from the fast-growing *Rhizobium* strains *R. meliloti* (4), *R. trifolii* (5), and *R. leguminosarum* (6); at least one of these *nod* genes is functionally and structurally conserved between these comparatively closely related strains (7).

To clone *nod* genes from the *Parasponia Rhizobium* strain RP501, we adopted a strategy of cross-species complementation using *R. meliloti* nodulation mutants. This strategy was adopted because nodulation mutants of *Parasponia Rhizobium* were not available and it was based on the assumption that, in spite of significant differences in the nodulation process between different *Rhizobium* species, some nodulation functions might nevertheless be conserved. Thus, a cloned bank of *Parasponia Rhizobium* DNA was constructed in a broad host range mobilizable cosmid vector and conjugated into nodulation-deficient mutants of *R. meliloti.* As described in this paper, we made the unexpected discovery that nodulation genes affecting early events in the nodulation process are functionally, structurally, and organizationally conserved between two widely divergent *Rhizobium* species.

MATERIALS AND METHODS

Bacterial Strains and Plasmids. Bacterial strains and plasmids used in these experiments are listed in Table 1. Bacterial conjugations were performed as described (12).

Media. LB, TY, M9-sucrose, and Nod media have been described (8).

DNA Biochemistry. Total DNA of *Parasponia Rhizobium* strain 501 was prepared as described (8). Restriction endonucleases were purchased from Boehringer Mannheim or Bethesda Research Laboratories and were used according to manufacturers instructions. Agarose gel electrophoresis was performed as described (13). Southern blotting and hybridizations were performed essentially under conditions described by Ausubel and Ausubel (14), with the following modifications: hybridizations were carried out at 42°C in the

The publication costs of this article were defrayed in part by page charge payment. This article must therefore be hereby marked "advertisement" in accordance with 18 U.S.C. §1734 solely to indicate this fact.

Abbreviation: kb, kilobase(s).
Table 1. Bacterial strains and plasmids

<table>
<thead>
<tr>
<th>Strains</th>
<th>Relevant markers</th>
<th>Source or ref.</th>
</tr>
</thead>
<tbody>
<tr>
<td>E. coli</td>
<td>hsd 20Sr−, recA13, ara14, proA2 lacY1, galK2, rpsL20(st-r), xyl-5, mtl-1, lam−</td>
<td>H. Boyer</td>
</tr>
<tr>
<td>HB101(lam)</td>
<td>hsd20Sr, recA13, ara14, proA2 lacY1, galK2, rpsL20 (st-r), xyl-5, mtl-1, supE44 (ambl857)</td>
<td>F. J. deBruijn</td>
</tr>
<tr>
<td>DK1</td>
<td>(lacX74-del, galU, galK, rpsL(st-r)) (Strr-recA)306-del</td>
<td>D. Kurnit</td>
</tr>
<tr>
<td>R. meliloti</td>
<td>Str-r, nm-r</td>
<td>Rm1021</td>
</tr>
<tr>
<td></td>
<td>Str-r, nm-r, nod−, hae−</td>
<td>Rm1126</td>
</tr>
<tr>
<td></td>
<td>Str-r, nm-r, nod−, hae−</td>
<td>Rm1027</td>
</tr>
<tr>
<td>R. meliloti</td>
<td>Str-r, nm-r, nod−, hae−</td>
<td>Gy833</td>
</tr>
<tr>
<td></td>
<td>Str-r, nm-r, nodAB</td>
<td>Gy1823</td>
</tr>
<tr>
<td></td>
<td>Str-r, nm-r, nodA::Tn5</td>
<td>TJ1A3</td>
</tr>
<tr>
<td></td>
<td>Str-r, nm-r, nodB::Tn5</td>
<td>TJ2B2</td>
</tr>
<tr>
<td></td>
<td>Str-r, nm-r, nodC::Tn5</td>
<td>TJ170</td>
</tr>
<tr>
<td></td>
<td>Str-r, nm-r, nodC::Tn5</td>
<td>TJ8A2</td>
</tr>
<tr>
<td>Rhizobium</td>
<td>Str-r, nm-r, nodC::Tn5</td>
<td>Strain 501</td>
</tr>
<tr>
<td>Agrobacterium tumefaciens</td>
<td>Str-r, C58 cured of Ti plasmid</td>
<td>A136</td>
</tr>
<tr>
<td>Plasmid</td>
<td>IncP, repRK2, Tc−, cos</td>
<td>pLAFR1</td>
</tr>
<tr>
<td></td>
<td>repColE1, nm-r</td>
<td>pRK2013</td>
</tr>
<tr>
<td></td>
<td>ap-r, nodABC of Rm41</td>
<td>pEKO12</td>
</tr>
<tr>
<td></td>
<td>21.3-kb insert</td>
<td>pPRC6</td>
</tr>
<tr>
<td></td>
<td>Subclone of pPRC6</td>
<td>pPRC6.1</td>
</tr>
<tr>
<td></td>
<td>opposite orientation, same insert as pPRC6.1</td>
<td>pPRC6.2</td>
</tr>
<tr>
<td>Prg</td>
<td>λ::Tn5</td>
<td>Oam Pam</td>
</tr>
</tbody>
</table>

96-well microtiter plates as described (13). Approximately 80% of the cosmid clones examined by gel electrophoresis contained inserts. In addition to storing the clone bank in microtiter plates, 1600 Tc colonies were scraped directly from Petri dishes and frozen en masse in LB medium containing 3% (vol/vol) glycerol/tetracycline (10 μg/ml). These mixed cultures were used as the donor inoculum for mass matings involving the whole gene library.

Transposon Tn5 Mutagenesis. Preparation of λ::Tn5 lysates and transposon Tn5 mutagenesis of plasmid pPRC6 were carried out essentially as described (18). Subsequent to infection with λ::Tn5, 12,000 kanamycin-resistant (Km') HB101/pPRC6 colonies were picked, and plasmid DNA was prepared by the method of Birnboim and Doly (19). This plasmid DNA was then used to transform E. coli strain DK1, and Km' transformants were selected on LB kanamycin plates. Plasmid DNA was prepared from 60 Km' transformants, and the location of Tn5 was determined by restriction endonuclease analysis using EcoRI, Xho I, and Sal I.

Nitrogenase Assays. Inoculation of plants with *Rhizobium* and acetylene reduction assays were performed as described (8).

Microscopy. Three- or 4-week-old nodules were excised from alfalfa roots, fixed, and prepared for light microscopy as described (20).

RESULTS

Parasponia Rhizobium Contains Nodulation Genes Which Complement R. meliloti nod− Mutants. To determine whether *Parasponia* *Rhizobium* strain 501 (RP501) contains nodulation genes functionally homologous to those already identified in *R. meliloti*, we attempted to obtain functional complementation of *R. meliloti* nod− mutants with cloned *Parasponia* *Rhizobium* DNA fragments. A gene library of RP501 DNA was constructed in the cosmid vector pLAFR1 by using a partial EcoRI digest of RP501 DNA, and the library was mobilized en masse from *E. coli* strain HB101 into the *R. meliloti* nod− mutant strains Rm1126 and Rm1027. *R. meliloti* strains Rm1126 and Rm1027 both contain mutations in the nodC gene (21), one of three so-called “common nodulation” genes (7), and they are incapable of initiating nodule development on alfalfa (5). Strains containing nodC mutations fail to curl root hairs. Because root hair curling is ordinarily associated with successful infection of alfalfa, it is believed that the nodC product acts early in the nodulation process (22). Strain Rm1126 contains an endogenous insertion sequence (IS-1) in nodC and strain Rm1027 contains a complex nodC insertion involving both transposon Tn5 and phage μ sequences (13).

About 800 Tc' *R. meliloti* Rm1126 and Rm1027 transconjugants containing the RP501 library were mass inoculated in two groups of 40 colonies each onto alfalfa plants grown aseptically in test tubes on nutrient agar slants. Twenty-nine and 38 plants were inoculated with Rm1126 and Rm1027 transconjugants, respectively. The formation of nodules served as a selection for cloned RP501 sequences that complemented the nodulation defects in the *R. meliloti* hosts. Twenty-three of 29 alfalfa plants inoculated with Rm1126 transconjugants were nodulated after 5 weeks, and 28 of 38 plants inoculated with Rm1027 transconjugants were nodulated. The parental strains (RP501, Rm1126, Rm1027) did not nodulate plants (0 of 30 plants), nor did the RP501 clone bank in *E. coli* when tested on 30 plants. Bacteria were isolated from several surface-sterilized nodules formed by the Rm1126 and Rm1027 transconjugants, and plasmid DNA was prepared from individual isolates and subjected to restriction endonuclease digestion. A single plasmid DNA species, pPRC6, which contained a 13.4-kb EcoRI insert, was found to be common to all of these isolates. [Plasmid pPRC6...
also contained a 6.7-kb insert, which we later demonstrated to be a partial duplication of the vector pLAFR1 (data not shown). When \(^{32}\)P-labeled pPRC6 DNA was used to probe EcoRI digests of RP501 DNA by using the Southern blotting and hybridization technique (14), a 13.4-kb genomic fragment was labeled, verifying that no rearrangement of insert DNA took place during the cloning. pPRC6 DNA was used to transform \(E.\ coli\) strain HB101, and the plasmid was subsequently conjugated back into Rm1126. Single Rm1126 transconjugants carrying pPRC6 acquired the capacity to nodulate alfalfa plants.

To verify that the cloned RP501 13.4-kb EcoRI fragment contained the DNA sequences responsible for complementing \(R.\ meliloti\) strains Rm1126 and Rm1027, the 13.4-kb EcoRI insert fragment in pPRC6 was subcloned in both orientations in pLAFR1 (resulting in plasmids pPRC6.1 and pPRC6.2). Both subclones complemented Rm1027 in nodulation assays. This latter result suggests that the \(Parasponia Rhizobium\) nodulation gene or genes were being expressed from an endogenous \(Parasponia Rhizobium\) promoter in \(R.\ meliloti\). A restriction map of the 13.4-kb EcoRI fragment cloned in pPRC6 is shown in Fig. 1.

Characteristics of Nodules Elicited by \(R.\ meliloti\) Containing \(Parasponia Rhizobium\) Nodulation Genes. Rp1027/pPRC6 and Rm1126/pPRC6 induced root hair deformations similar to wild-type \(R.\ meliloti;\) shepherd's crooks were elicited at the same frequency observed in infections with wild-type \(R.\ meliloti\). The parental strains Rm1126, Rm1027, and RP501 did not elicited any noticeable response (root hairs were not curled nor were they swollen or distorted).

Nodules elicited by Rp1027/pPRC6 and Rm1127/pPRC6 were completely effective and reduced acetylene at levels comparable to those of nodules elicited by the wild-type \(R.\ meliloti\) strain Rm1021. Light microscope examinations showed that nodules elicited by infection with Rm1126 transconjugants were indistinguishable from wild-type-induced alfalfa nodules in overall structure and internal anatomy (Fig. 2). The cylindrical shape and distinct zonation into meristematic, early symbiotic, and late symbiotic regions is apparent in longitudinal sections of nodules induced by both wild-type and Rm1126 transconjugants. Five nodules elicited by the transconjugants were examined, and all exhibited the wild-type nodule morphology.

Structural Conservation of Nodulation Genes. In addition to genetic data, we also obtained structural evidence that indicated evolutionary conservation between the common nod region of \(R.\ meliloti\) and the nod genes carried on pPRC6. In \(R.\ meliloti\), evidence strongly suggests that the so-called "common" nodulation genes, \(nodABC\), constitute a single operon with transcription initiated at nodA (23). We isolated \(^{32}\)P-labeled DNA fragments from plasmid pEK12, which carries \(R.\ meliloti\) nodABC (24), and we used these labeled fragments to hybridize to nitrocellulose filters prepared by the Southern blotting technique, which contained restriction endonuclease-digested pPRC6 DNA. The results of these hybridizations are shown in Fig. 3. A 1.0-kb Sal I fragment, which carries most of \(R.\ meliloti\) nodC, hybridized to a 1.9-kb Sal I fragment of pPRC6 and to an overlapping 5.2-kb Xho I fragment. A 2.0-kb BamHI/Sal I fragment from pEK12, which includes nodA and nodB and maps to the beginning of nodC, hybridized to a 1.3-kb Sal I fragment and to an 8.8-kb Sal I fragment of pPRC6 (which consists of 6.6 kb of DNA from Rm501 and 2.2 kb of vector DNA) and to overlapping 5.2-kb Xho I and 2.4-kb Xho I fragments. Probes showed no hybridization to vector sequences. This pattern of hybridization, in which nodC and nodAB of \(R.\ meliloti\) show homology to different contiguous restriction fragments of the \(Parasponia Rhizobium\) nod locus, indicates conservation of more than one of these genes and also suggests conservation of the organization of this symbiotic operon.

Localization of RP501 Nodulation Genes on pPRC6 by Tn5 Mutagenesis. The 13.4-kb EcoRI fragment of pPRC6 was subjected to Tn5 mutagenesis as described by de Bruijn et al. (18). Tn5 insertions in the fragment were mapped unambiguously by reconciling Sal I and Xho I patterns of digestion of purified plasmid DNAs. Each of 14 separate Tn5 insertions distributed across the fragment as well as 4 insertions in the vector were assessed for their capacity to complement the mutant nodC \(R.\ meliloti\) strain Rp1027. A correlated physical and genetic map showed that Tn5 insertions that prevented complementation of nod mutants were clustered in a 3-kb region that overlapped the structurally conserved sequences defined by DNA hybridization (Fig. 1). It is notable that in \(R.\ meliloti\), the nodC gene spans \(~\sim\)1 kb of DNA sequence, while the nodABC operon covers \(~\sim\)3 kb of sequence. Because most Tn5 insertions exhibit a polar effect on downstream sequences (25, 26), it is possible, in view of the hybridization results described above and the fact that insertions within a 3-kb region prevented complementation, that the Tn5 mutation ml-13 is exerting a polar effect on a downstream \(Parasponia Rhizobium\) nodC-like gene contained within a larger \(Parasponia Rhizobium\) nodulation operon.

To specify further the identity of the cloned genes from \(Parasponia Rhizobium\), we carried out experiments in which pPRC6 was used to complement separate mutations in \(R.\ meliloti\) nodA, nodB, and nodC genes. \(R.\ meliloti\) strains

![Fig. 1. Physical and genetic map of Rp501 nodulation locus. Physical and genetic map of the 13.4-kb EcoRI fragment from Rhizobium strain 501, which complements \(R.\ meliloti\) nod mutants. (A) Mapped locations of Tn5 insertions in pPRC6. (B) Nodulation phenotypes when plasmids carrying Tn5 insertions are used to complement Rm1027. (C) Restriction map of pPRC6. Black box indicates homology to a nodC probe from Rm1021. Shaded region shows homology to an Rm1021 probe that carries nodAB.](image-url)
FIG. 2. Sections of nodules induced by (A) wild-type Rm1021 showing characteristic distinct zonation into meristematic (M), early symbiotic (ES), late symbiotic (LS), and senescent (S) zones; (B) Rm1126/pPRC6 transconjugants. Zonation patterns are the same as in wild-type nodules.

DISCUSSION

We have shown that cross-species complementation is a valuable technique for cloning functionally conserved symbiotic genes from Parasponia Rhizobium. These genetic data demonstrate functional conservation between nodulation loci in fast- and slow-growing Rhizobium strains. We have also shown structural conservation between the common nod region of $R.\ meliloti$ and the locus carried on pPRC6. Strikingly, it appears likely that the genes nodABC, which are responsible for early nodulation functions, are conserved substantially between divergent Rhizobium strains with very different host specificities. This conservation of the nod operon indicates that all three nod genes in concert may provide basic functions essential for all Rhizobium-induced nodules.

The results presented here are congruent with unpublished data obtained recently by other workers. K. Scott and co-workers (K. Scott, personal communication) have demonstrated substantial homology at the level of the amino acid sequence between a nodulation gene of $R.\ trifolii$ and a nodulation gene of a slow-growing strain of Rhizobium from Parasponia ANU289. J. D. Noti and co-workers have achieved complementation of Rm1027 and Rm1126 with cosmid clones of cowpea Rhizobium strain IRC78 (J. D. Noti, personal communication). Thus, in addition to conservation of common nod genes between fast-growing Rhizobium strains, evidence is accumulating to indicate that these symbiotic genes are also found in the genomes of other slow-growing Rhizobium strains, regardless of the host specificity of these strains.

Slow-growing rhizobia differ significantly from fast-growing strains with respect to breadth of host range, growth rate, endogenous antibiotic resistance markers, and their capacity to fix nitrogen ex planta (27). In fast-growing rhizobia, symbiotic genes (nif and nod) are generally borne on large
Advantages of the strategy we used to identify this nodulation locus include eliminating the necessity, initially, of working with a slow-growing strain of *Rhizobium*, Rp501, and a slow-growing plant, *Parasponia*. Cross-species complementation, in which recipient strains carry known symbiotic defects, could be useful in the identification of other conserved symbiotic functions. Conservation of the entire nodABC operon implies that this operon has a basic and essential function in *Rhizobium* nodulation of many host types.

We thank J. Park and S. E. Brown for their help in construction of the Rp501 clone bank; S. R. Long and E. Kondorosi for providing strains; W. J. Buikema, C. D. Earl, and B. T. Nixon for valuable advice; and Rachel Hyde for help in preparation of this manuscript. This work was supported by a grant from Hoechst A.G.